\(\int \frac {\cos (c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx\) [132]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (warning: unable to verify)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 21, antiderivative size = 144 \[ \int \frac {\cos (c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=-\frac {3 \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a^{3/2} d}+\frac {9 \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {\sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {3 \sin (c+d x)}{2 a d \sqrt {a+a \sec (c+d x)}} \]

[Out]

-3*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/a^(3/2)/d-1/2*sin(d*x+c)/d/(a+a*sec(d*x+c))^(3/2)+9/4*arc
tan(1/2*a^(1/2)*tan(d*x+c)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))/a^(3/2)/d*2^(1/2)+3/2*sin(d*x+c)/a/d/(a+a*sec(d*x+c
))^(1/2)

Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 144, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {3902, 4107, 4005, 3859, 209, 3880} \[ \int \frac {\cos (c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=-\frac {3 \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{a^{3/2} d}+\frac {9 \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {3 \sin (c+d x)}{2 a d \sqrt {a \sec (c+d x)+a}}-\frac {\sin (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}} \]

[In]

Int[Cos[c + d*x]/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(-3*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(a^(3/2)*d) + (9*ArcTan[(Sqrt[a]*Tan[c + d*x])/(S
qrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) - Sin[c + d*x]/(2*d*(a + a*Sec[c + d*x])^(3/2)) + (3*
Sin[c + d*x])/(2*a*d*Sqrt[a + a*Sec[c + d*x]])

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3859

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(b/d), Subst[Int[1/(a + x^2), x], x, b*(C
ot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 3880

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 3902

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-Cot[
e + f*x])*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*(2*m + 1))), x] + Dist[1/(a^2*(2*m + 1)), Int[(a + b*C
sc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*(a*(2*m + n + 1) - b*(m + n + 1)*Csc[e + f*x]), x], x] /; FreeQ[{a, b,
 d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && (IntegersQ[2*m, 2*n] || IntegerQ[m])

Rule 4005

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[c/a,
Int[Sqrt[a + b*Csc[e + f*x]], x], x] - Dist[(b*c - a*d)/a, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /
; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 4107

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Dist[1
/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b*B*n - A*b*(m + n + 1)*Csc[e + f*x
], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {\sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac {\int \frac {\cos (c+d x) \left (-3 a+\frac {3}{2} a \sec (c+d x)\right )}{\sqrt {a+a \sec (c+d x)}} \, dx}{2 a^2} \\ & = -\frac {\sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {3 \sin (c+d x)}{2 a d \sqrt {a+a \sec (c+d x)}}-\frac {\int \frac {3 a^2-\frac {3}{2} a^2 \sec (c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx}{2 a^3} \\ & = -\frac {\sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {3 \sin (c+d x)}{2 a d \sqrt {a+a \sec (c+d x)}}-\frac {3 \int \sqrt {a+a \sec (c+d x)} \, dx}{2 a^2}+\frac {9 \int \frac {\sec (c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx}{4 a} \\ & = -\frac {\sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {3 \sin (c+d x)}{2 a d \sqrt {a+a \sec (c+d x)}}+\frac {3 \text {Subst}\left (\int \frac {1}{a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a d}-\frac {9 \text {Subst}\left (\int \frac {1}{2 a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{2 a d} \\ & = -\frac {3 \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a^{3/2} d}+\frac {9 \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {\sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {3 \sin (c+d x)}{2 a d \sqrt {a+a \sec (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.85 (sec) , antiderivative size = 129, normalized size of antiderivative = 0.90 \[ \int \frac {\cos (c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {\left (2 (3+2 \cos (c+d x)) \sqrt {1-\sec (c+d x)}-12 \text {arctanh}\left (\sqrt {1-\sec (c+d x)}\right ) (1+\sec (c+d x))+9 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {1-\sec (c+d x)}}{\sqrt {2}}\right ) (1+\sec (c+d x))\right ) \tan (c+d x)}{4 d \sqrt {1-\sec (c+d x)} (a (1+\sec (c+d x)))^{3/2}} \]

[In]

Integrate[Cos[c + d*x]/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

((2*(3 + 2*Cos[c + d*x])*Sqrt[1 - Sec[c + d*x]] - 12*ArcTanh[Sqrt[1 - Sec[c + d*x]]]*(1 + Sec[c + d*x]) + 9*Sq
rt[2]*ArcTanh[Sqrt[1 - Sec[c + d*x]]/Sqrt[2]]*(1 + Sec[c + d*x]))*Tan[c + d*x])/(4*d*Sqrt[1 - Sec[c + d*x]]*(a
*(1 + Sec[c + d*x]))^(3/2))

Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(449\) vs. \(2(119)=238\).

Time = 26.79 (sec) , antiderivative size = 450, normalized size of antiderivative = 3.12

method result size
default \(-\frac {\sqrt {-\frac {2 a}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\, \left (6 \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\, \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}{\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\right ) \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+\left (1-\cos \left (d x +c \right )\right )^{5} \csc \left (d x +c \right )^{5}-9 \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\, \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )+\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\right ) \left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+6 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )}{\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\right ) \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}+4 \left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}-9 \ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )+\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\right ) \sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}-5 \csc \left (d x +c \right )+5 \cot \left (d x +c \right )\right )}{4 d \,a^{2} \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1\right )}\) \(450\)

[In]

int(cos(d*x+c)/(a+a*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/4/d/a^2*(-2*a/((1-cos(d*x+c))^2*csc(d*x+c)^2-1))^(1/2)*(6*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*2^(1/2)*a
rctanh(2^(1/2)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*(-cot(d*x+c)+csc(d*x+c)))*(1-cos(d*x+c))^2*csc(d*x+c)^2
+(1-cos(d*x+c))^5*csc(d*x+c)^5-9*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*ln(csc(d*x+c)-cot(d*x+c)+((1-cos(d*x+
c))^2*csc(d*x+c)^2-1)^(1/2))*(1-cos(d*x+c))^2*csc(d*x+c)^2+6*2^(1/2)*arctanh(2^(1/2)/((1-cos(d*x+c))^2*csc(d*x
+c)^2-1)^(1/2)*(-cot(d*x+c)+csc(d*x+c)))*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)+4*(1-cos(d*x+c))^3*csc(d*x+c)
^3-9*ln(csc(d*x+c)-cot(d*x+c)+((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2))*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)
-5*csc(d*x+c)+5*cot(d*x+c))/((1-cos(d*x+c))^2*csc(d*x+c)^2+1)

Fricas [A] (verification not implemented)

none

Time = 0.34 (sec) , antiderivative size = 518, normalized size of antiderivative = 3.60 \[ \int \frac {\cos (c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\left [-\frac {9 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {-a} \log \left (\frac {2 \, \sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 3 \, a \cos \left (d x + c\right )^{2} + 2 \, a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 12 \, {\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) - 4 \, {\left (2 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{8 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}, -\frac {9 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - 12 \, {\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - 2 \, {\left (2 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{4 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}\right ] \]

[In]

integrate(cos(d*x+c)/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[-1/8*(9*sqrt(2)*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(-a)*log((2*sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) +
 a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + 3*a*cos(d*x + c)^2 + 2*a*cos(d*x + c) - a)/(cos(d*x + c)^2 + 2*c
os(d*x + c) + 1)) + 12*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(-a)*log((2*a*cos(d*x + c)^2 - 2*sqrt(-a)*sqr
t((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) - 4*(
2*cos(d*x + c)^2 + 3*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^2
 + 2*a^2*d*cos(d*x + c) + a^2*d), -1/4*(9*sqrt(2)*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(a)*arctan(sqrt(2)
*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) - 12*(cos(d*x + c)^2 + 2*cos(d*x
 + c) + 1)*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) - 2*(2*
cos(d*x + c)^2 + 3*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 +
 2*a^2*d*cos(d*x + c) + a^2*d)]

Sympy [F]

\[ \int \frac {\cos (c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {\cos {\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(cos(d*x+c)/(a+a*sec(d*x+c))**(3/2),x)

[Out]

Integral(cos(c + d*x)/(a*(sec(c + d*x) + 1))**(3/2), x)

Maxima [F]

\[ \int \frac {\cos (c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\int { \frac {\cos \left (d x + c\right )}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(cos(d*x+c)/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)/(a*sec(d*x + c) + a)^(3/2), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 387 vs. \(2 (119) = 238\).

Time = 1.17 (sec) , antiderivative size = 387, normalized size of antiderivative = 2.69 \[ \int \frac {\cos (c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {\frac {16 \, \sqrt {2} {\left (3 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - a\right )}}{{\left ({\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{4} - 6 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} a + a^{2}\right )} \sqrt {-a} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} - \frac {9 \, \sqrt {2} \log \left ({\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2}\right )}{\sqrt {-a} a \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} + \frac {2 \, \sqrt {2} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} + \frac {12 \, \log \left (\frac {{\left | -2 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - 4 \, \sqrt {2} {\left | a \right |} + 6 \, a \right |}}{{\left | -2 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + 4 \, \sqrt {2} {\left | a \right |} + 6 \, a \right |}}\right )}{\sqrt {-a} {\left | a \right |} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}}{8 \, d} \]

[In]

integrate(cos(d*x+c)/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

1/8*(16*sqrt(2)*(3*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - a)/(((sqrt(-a)*ta
n(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^4 - 6*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1
/2*d*x + 1/2*c)^2 + a))^2*a + a^2)*sqrt(-a)*sgn(cos(d*x + c))) - 9*sqrt(2)*log((sqrt(-a)*tan(1/2*d*x + 1/2*c)
- sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2)/(sqrt(-a)*a*sgn(cos(d*x + c))) + 2*sqrt(2)*sqrt(-a*tan(1/2*d*x + 1/2
*c)^2 + a)*tan(1/2*d*x + 1/2*c)/(a^2*sgn(cos(d*x + c))) + 12*log(abs(-2*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(
-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - 4*sqrt(2)*abs(a) + 6*a)/abs(-2*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*ta
n(1/2*d*x + 1/2*c)^2 + a))^2 + 4*sqrt(2)*abs(a) + 6*a))/(sqrt(-a)*abs(a)*sgn(cos(d*x + c))))/d

Mupad [F(-1)]

Timed out. \[ \int \frac {\cos (c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {\cos \left (c+d\,x\right )}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

[In]

int(cos(c + d*x)/(a + a/cos(c + d*x))^(3/2),x)

[Out]

int(cos(c + d*x)/(a + a/cos(c + d*x))^(3/2), x)